【C语言】详解数据在内存中的存储

1. 整形在内存中的存储

1.1 原码、反码、补码

计算机能够处理的是二进制的数据,
整形和浮点型数据在内存中也都是以二进制的形式存储的。
整数2进制表示方法,即原、反、补码,三种均有符号位数值位俩部分,符号位用0表示,1表示
的整数:原、反、补码相同。
的整数:原、反、补码要进行计算。
注意:整数在内存中存储的是补码的二进制序列。

比如:-10

100000000 000000000 000000000 000001010(原码)
111111111 111111111 111111111 111110101(反码:取反)
111111111 111111111 111111111 111110110(补码:+1)
在这里插入图片描述

1.2 大小端介绍

  • 大端字节存储:把一个数据的低位字节处的数据放在内存的高地址处
    高位字节处的数据放在内存的低地址处
    在这里插入图片描述
  • 小端字节存储:把一个数据的低位字节处的数据放在内存的低地址处
    高位字节处的数据放在内存的高地址处

在这里插入图片描述查看我们当前vs编译器是大端存储还是小段存储:

在这里插入图片描述

1.3 设计一个程序来判断当前编译器的字节序:

#include <stdio.h>
int check_sys()
{
	int a = 1;
	return *(char*)&a;//a原本是int *,用(char*)强制类型转换
		//return *(char*)&a
	//等同于下面注释代码
	//char* p = (char*)&a;
	//if (*p == 1)
	//	return 1;
	//else
	//	return 0;
}

int main()
{
	if (1 == check_sys())
		printf("小端n");
	else
		printf("大端n");

	return 0;
}

在这里插入图片描述

2. 有符号char和无符号char在内存中存储的区别

2.1 有符号char(signed char/char)

范围:-128 ~ 127
00000000 0
00000001 1
… 一直+1
011111111 127
从符号位为1开始为负,
10000000 -128
10000001 -127

111111110 -2
111111111 -1
然后回到+1回到0,1
00000001 1
00000010 2

2.2 无符号char(unsigned char)

范围:0 ~ 255
00000000 0
00000001 1
00000010 2
…一直+1
011111111 127
因为是无符号char,所以不需要考虑符号位
10000000 128

111111111 255
00000000 0

3. 浮点型在内存中的存储

3.1 浮点数存储规则

任何一个二进制浮点数V可以表示成下面的形式:(用x表示*乘)

V = (-1) ^ S x M x 2^E

  • (-1) ^ S 表示符号位,当S=0,V位正数;当S= 1,V为负数。
  • M表示有效数字,大于等于1,小于2。
  • 2^E表示指数位。

例如:
在这里插入图片描述
10进制的:5.5
2进制的: 101.1

(-1)^0 x 1.011 x 2 ^2
S = 0
M = 1.011
E = 2

float型(32)
IEEE 754规定:对于32位的浮点数,最高的1 位是符号位S,接着的8位是指数E,剩下的32位为有效数字M。

在这里插入图片描述
double型(64)
对于64位,最高的1位是符号位,接着的 11 位是指数E,剩下的 52 位为有效数字M。

在这里插入图片描述

3.2 IEEE 754对有效数字M和指数E的规定

1、有效数字M:
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以舍去,只保存小数部分。比如保存1.0110001101时,只保存0110001101,后面的位数补0就可以了 ,等到读取的时候,再把第一位的1补上去。

2、指数E:
E为一个无符号整数(unsigned int)
a. 把E存入内存中去,它的真实值必须加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如:2^10的E是10,所以保存32浮点数时,必须保存成10+127=137,即10001001,若是64浮点数,10+1023。

接下来,指数E从内存取出还可以再分为以下三种情况:

  • E不全为0或不全为1(规格化值)
    这是最常见情况,取出内存中的数时,指数E的计算值减去127(64位下 - 1023),得到真实值,再将有效数字M前加上第一位的1。

  • E全为0
    这时,浮点数的指数E等于1-127(1023)即为真实值。
    有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数,这样做是为了表示±0,以及接近于0的很小的数字。

  • E全为1

  • 这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S),S=0,表示正无穷,S=1,表示为负无穷。