逻辑回归

逻辑回归

二分类情况

对于二分类问题,在线性可分的情况下,试图构建一个判别式 W ′ X ′ + b {W'X'+b} WX+b,为了便于操作将判别式增广为 W X {WX} WX
W x i = {   > 0 , x i ∈ w 1 , Y = 1 < 0 , x i ∈ w 2 , Y = 0 {Wx_i}=begin{cases} >0, quad x_i in w_1,Y=1\ <0, quad x_i in w_2,Y=0 end{cases} Wxi={ >0,xiw1,Y=1<0,xiw2,Y=0
为了将其表示为概率的方式我们对概率建模,将其缩放为 [ 0 , 1 ] [0,1] [0,1]的范围上,所以我们利用sigmoid函数 1 1 + e − x frac{1}{1+e^{-x}} 1+ex1

由此我们设分类为 w 1 w_1 w1的概率为
P ( Y = 1 ∣ x ) = 1 1 + e − W x P(Y=1|x)=frac{1}{1+e^{-Wx}} P(Y=1∣x)=1+eWx1
设:
P ( Y = 1 ∣ x i ) = P ( x i ) P ( Y = 0 ∣ x i ) = 1 − P ( x i ) P(Y=1|x_i)=P(x_i)\ P(Y=0|x_i)=1-P(x_i) P(Y=1∣xi)=P(xi)P(Y=0∣xi)=1P(xi)
由此构建似然函数:
L ( W ) = ∏ [ P ( x i ) ] y i [ 1 − P ( x i ) ] ( 1 − y i ) L(W)=prod[P(x_i)]^{y_i}[1-P(x_i)]^{(1-y_i)} L(W)=[P(xi)]yi[1P(xi)](1yi)

对似然函数取对数:
I n ( L ( W ) ) = ln ⁡ ( ∏ [ P ( x i ) ] y i [ 1 − P ( x i ) ] ( 1 − y i ) ) = ∑ ( ln ⁡ ( [ P ( x i ) ] y i ) + ln ⁡ ( [ 1 − P ( x i ) ] ( 1 − y i ) ) ) = ∑ ( y i ln ⁡ ( [ P ( x i ) ] ) + ( 1 − y i ) ln ⁡ ( [ 1 − P ( x i ) ] ) ) = ∑ [ y i ⋅ W x i − ln ⁡ ( 1 + e W x i ) ] begin{aligned} In(L(W)) &=ln(prod[P(x_i)]^{y_i}[1-P(x_i)]^{(1-y_i)})\ &=sum (ln([P(x_i)]^{y_i})+ln([1-P(x_i)]^{(1-y_i)}))\ &=sum ({y_i}ln([P(x_i)])+{(1-y_i)}ln([1-P(x_i)]))\ &=sum[y_icdot Wx_i-ln(1+e^{Wx_i})] end{aligned} In(L(W))=ln([P(xi)]yi[1P(xi)](1yi))=(ln([P(xi)]yi)+ln([1P(xi)](1yi)))=(yiln([P(xi)])+(1yi)ln([1P(xi)]))=[yiWxiln(1+eWxi)]
为了最大化似然,即最小化似然的负数

使似然除以样本总数n(减少梯度爆炸出现的概率),再乘以-1(将求最大值问题转化为求最小值问题
J ( W ) = − 1 N ∑ ( ln ⁡ ( [ P ( x i ) ] y i ) + ln ⁡ ( [ 1 − P ( x i ) ] ( 1 − y i ) ) ) J(W)=-frac{1}{N}sum (ln([P(x_i)]^{y_i})+ln([1-P(x_i)]^{(1-y_i)})) J(W)=N1(ln([P(xi)]yi)+ln([1P(xi)](1yi)))
采用梯度下降的方法:
∂ J ( W ) ∂ W = − 1 N ∑ ( y i − P ( x i ) ) x i frac{partial J(W)}{partial W}=-frac{1}{N}sum (y_i-P(x_i))x_i WJ(W)=N1(yiP(xi))xi
更新 W W W:
W k + 1 = W k − α ∂ J ( W ) ∂ W , k 为迭代次数 , α 为学习率 W^{k+1}=W^{k}-alphafrac{partial J(W)}{partial W},quad k为迭代次数,alpha为学习率 Wk+1=WkαWJ(W),k为迭代次数,α为学习率
∣ ∣ W k + 1 − W k ∣ ∣ ||W^{k+1}-W^{k}|| ∣∣Wk+1Wk∣∣小于阈值时或者当 k k k达到最大迭代次数时停止迭代。

逻辑回归是在线性回归的基础上加了一个 Sigmoid 函数(非线形)映射,使得逻辑回归称为了一个优秀的分类算法。本质上来说,两者都属于广义线性模型,但他们两个要解决的问题不一样,逻辑回归解决的是分类问题,输出的是离散值,线性回归解决的是回归问题,输出的连续值。

多分类问题

为了实现多分类,我们引入一个softmax函数: softmax ( x i ) = e x i ∑ j e x j text{softmax}(x_i) = frac{e^{x_i}}{sum_j e^{x_j}} softmax(xi)=jexjexi来代替Sigmoid函数,同构建模型: Y = W X i Y=WX_i Y=WXi,其中 Y Y Y为一个列向量,第 i i i个数表示第 i i i个类别的概率。

其中修改损失函数:
J ( W ) = − 1 n [ ∑ i = 1 n ∑ j = 1 k 1 { j ( i ) = j } ⋅ log ⁡ ( e W x i ∑ l = 1 k e W x i ) ] J(W)=-frac{1}{n}left[sum_{i=1}^nsum_{j=1}^k 1_{{j^{(i)}=j}}cdotlog (frac{e^{Wx_i}}{sum_{l=1}^k e^{Wx_i}})right] J(W)=n1[i=1nj=1k1{j(i)=j}log(l=1keWxieWxi)]
其中 1 { j ( i ) = j } 1_{{j^{(i)}=j}} 1{j(i)=j}表示第 i i i类分类正确时为1,否则为0, k k k为类别数。