bert ranking listwise demo
下面是用bert 训练listwise rank 的 demo
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import BertModel, BertTokenizer
from sklearn.metrics import pairwise_distances_argmin_min
class ListwiseRankingDataset(Dataset):
def __init__(self, queries, documents, labels, tokenizer, max_length):
self.input_ids = []
self.attention_masks = []
self.labels = []
for query, doc_list, label_list in zip(queries, documents, labels):
for doc, label in zip(doc_list, label_list):
encoded_pair = tokenizer(query, doc, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt')
self.input_ids.append(encoded_pair['input_ids'])
self.attention_masks.append(encoded_pair['attention_mask'])
self.labels.append(label)
self.input_ids = torch.cat(self.input_ids, dim=0)
self.attention_masks = torch.cat(self.attention_masks, dim=0)
self.labels = torch.tensor(self.labels)
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
input_id = self.input_ids[idx]
attention_mask = self.attention_masks[idx]
label = self.labels[idx]
return input_id, attention_mask, label
class BERTListwiseRankingModel(torch.nn.Module):
def __init__(self, bert_model_name):
super(BERTListwiseRankingModel, self).__init__()
self.bert = BertModel.from_pretrained(bert_model_name)
self.dropout = torch.nn.Dropout(0.1)
self.fc = torch.nn.Linear(self.bert.config.hidden_size, 1)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = self.dropout(outputs[1])
logits = self.fc(pooled_output)
return logits.squeeze()
# 初始化BERT模型和分词器
bert_model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(bert_model_name)
# 示例输入数据
queries = ['I like cats', 'The sun is shining']
documents = [['I like dogs', 'Dogs are cute'], ['It is raining', 'Rainy weather is gloomy']]
labels = [[1, 0], [0, 1]]
# 超参数
batch_size = 8
max_length = 128
learning_rate = 1e-5
num_epochs = 5
# 创建数据集和数据加载器
dataset = ListwiseRankingDataset(queries, documents, labels, tokenizer, max_length)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型并加载预训练权重
model = BERTListwiseRankingModel(bert_model_name)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# 训练模型
model.train()
for epoch in range(num_epochs):
total_loss = 0
for input_ids, attention_masks, labels in dataloader:
optimizer.zero_grad()
logits = model(input_ids, attention_masks)
# 计算损失函数(使用交叉熵损失函数)
loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, labels.float())
total_loss += loss.item()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}/{num_epochs} - Loss: {total_loss:.4f}")
# 推断模型
model.eval()
with torch.no_grad():
embeddings = model.bert.embeddings.word_embeddings(dataset.input_ids)
pairwise_distances = pairwise_distances_argmin_min(embeddings.numpy())
# 输出结果
for i, query in enumerate(queries):
print(f"Query: {query}")
print("Documents:")
for j, doc in enumerate(documents[i]):
doc_idx = pairwise_distances[0][i * len(documents[i]) + j]
doc_dist = pairwise_distances[1][i * len(documents[i]) + j]
print(f"Document index: {doc_idx}, Distance: {doc_dist:.4f}")
print(f"Document: {doc}")
print("")
print("---------")