LeetCode 热题 HOT 100:链表专题
LeetCode 热题 HOT 100:https://leetcode.cn/problem-list/2cktkvj/
文章目录
2. 两数相加
实现步骤:
- 将两个链表看成是相同长度的进行遍历,如果一个链表较短则在前面补 0,比如:987 + 23 = 987 + 023 = 1010。
- 每一位计算的同时需要考虑上一位的进位问题,而当前位计算结束后同样需要更新进位值。
- 如果两个链表全部遍历完毕后,进位值为 1,则在新链表最前方添加节点。
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode pre = new ListNode(0);
ListNode p1 = l1, p2 = l2, q = pre;
int sign = 0;
while(p1 != null || p2 != null){
int sum = 0;
if(p1 == null){
sum = p2.val + sign;
p2 = p2.next;
}else if(p2 == null){
sum = p1.val + sign;
p1 = p1.next;
}else{
sum = p1.val + p2.val + sign;
p1 = p1.next;
p2 = p2.next;
}
sign = sum >= 10 ? 1 : 0; // 修改标志位
ListNode node = new ListNode(sum % 10);
q.next = node;
q = q.next;
}
if(sign == 1){
ListNode node = new ListNode(1);
q.next = node;
}
return pre.next;
}
}
19. 删除链表的倒数第 N 个结点
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode pre = new ListNode(0); // 伪头部节点
pre.next = head;
ListNode p, q;
p = q = pre;
int co = 0;
while(q.next != null){ // 先让q指针先走n步,然后p指针再继续走
if(++co > n){
p = p.next;
}
q = q.next;
}// 结束循环时,p指针指向倒数第N+1位
p.next = p.next.next;
// 注意避坑点:return head; 是存在问题的:当链表中只有一个元素时,p指针会进行删除后,head 还是指向原来的那个结点。
return pre.next;
}
}
21. 合并两个有序链表
class Solution {
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode res = new ListNode(0);
ListNode p = res;
while(list1 != null && list2 != null){
if(list1.val < list2.val){
p.next = list1;
list1 = list1.next;
}else{
p.next = list2;
list2 = list2.next;
}
p = p.next;
}
p.next = list1 == null ? list2 : list1;
return res.next;
}
}
23. 合并 K 个升序链表
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
ListNode head = null;
for(int i = 0; i < lists.length; i ++){
head = mergeTwoLists(head, lists[i]);
}
return head;
}
public ListNode mergeTwoLists(ListNode a, ListNode b){
ListNode res = new ListNode(0);
ListNode p = res;
while(a!=null && b!=null){
if(a.val < b.val){
p.next = a;
a = a.next;
}else{
p.next = b;
b = b.next;
}
p = p.next;
}
p.next = a != null ? a : b;
return res.next;
}
}
141. 环形链表
哈希表做法(时间复杂度较高):
public class Solution {
public boolean hasCycle(ListNode head) {
if(head == null){
return false;
}
Set<ListNode> set = new HashSet(); // set 记录结点的地址
while(head.next != null){
if(set.contains(head)){
return true;
}
set.add(head);
head = head.next;
}
return false;
}
}
快慢指针做法1:
public class Solution {
public boolean hasCycle(ListNode head) {
if(head == null){
return false;
}
ListNode slow, fast;
slow = head;
fast = head.next;
// slow 每次向前走一步,fast 每次向前走两步(可以任意多步)
// 当存在环时,fast 由于走得快,会发生扣圈的情况,且最终与 slow 相遇
// 当不存在环时,fast 可能在某次循环后,发生当前位置为空,或下一位置为空的两种情况,当然由于走的快,最终会返回false。
// 总之,循环的结束条件,要么出现环 slow == fast,要么 fast 先一步为空!
while(slow != fast && fast != null && fast.next != null){
// 注意:fast != null 要先于fast.next != null 来判断,以防止控制帧异常
slow = slow.next;
fast = fast.next.next;
}
return slow == fast;
}
}
快慢指针做法2(思路同下方“环形链表2”):
public class Solution {
public boolean hasCycle(ListNode head) {
ListNode slow = head, fast = head;
while(true){
if(fast==null || fast.next==null){
return false;
}
slow = slow.next;
fast = fast.next.next;
if(slow==fast){
return true;
}
}
}
}
142. 环形链表 II
题目链接:https://leetcode.cn/problems/linked-list-cycle-ii/?envType=study-plan-v2&envId=top-100-liked
哈希表做法(时间复杂度较高):
public class Solution {
public ListNode detectCycle(ListNode head) {
Set<ListNode> set = new HashSet<>();
ListNode p = head;
while(p!=null){
if(set.contains(p)){
return p;
}
set.add(p);
p = p.next;
}
return null;
}
}
快慢指针,实现思路如下:
- 设
fast
每次走两个节点,slow
每次走一个节点。环外有a
个结点,环内有b
个结点。 - 相遇时,
fast
走了f
步,slow
走了s
步。
①f = 2s
②f = s + nb
表示f
比s
多走了n*b
步,即n
圈。这样表示的原因在于扣圈。
化简得:f = 2nb, s = nb
- 设刚开始
slow
指针从开始到环的入口要走 k 步:k = a + nb (n = 0,1,2,…)
- 由于
s = n*b
,即已经走了n*b
步了,那么此时只需要再走a
步即可回到链表入环的起点。
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast = head, slow = head;
while(true){
if(fast == null || fast.next == null){
return null;
}
fast = fast.next.next;
slow = slow.next;
if(fast == slow){
break;
}
}
fast = head; // fast回到链表起点,与 slow 一同遍历 a 步
while(slow != fast){
slow = slow.next;
fast = fast.next;
}
return fast;
}
}
148. 排序链表
使用优先队列模仿堆:
class Solution {
public ListNode sortList(ListNode head) {
PriorityQueue<ListNode> queue = new PriorityQueue<>((a, b) -> b.val-a.val); // 大顶堆
while(head != null){
queue.offer(head); // 从堆底插入
head = head.next;
}
ListNode pre = new ListNode(0);
while(!queue.isEmpty()){
ListNode p = queue.poll(); // 出队列并调整堆
p.next = pre.next; // 头插法倒序
pre.next = p;
}
return pre.next;
}
}
自顶向下归并排序1: 时间复杂度 O(nlogn),空间复杂度O(logn)
class Solution {
public ListNode sortList(ListNode head) {
return mergeSort(head, null);
}
// 归并排序
// 将头指针和尾指针之前的元素进行排序,初始尾指针为null,即最后一个节点的下一个空节点
public ListNode mergeSort(ListNode head, ListNode tail){
if(head == tail){
return head;
}
if(head.next == tail){ // 隔离出来单独结点
head.next = null;
return head;
}
ListNode slow, fast;
slow = fast = head;
while(fast != tail){
slow = slow.next;
fast = fast.next;
if(fast != tail){
fast = fast.next;
}
}
ListNode mid = slow;
ListNode l1 = mergeSort(head, mid); // 将 head 至 mid 之前的节点进行排序
ListNode l2 = mergeSort(mid, tail); // 将 mid 至 tail 之前的节点进行排序
return mergeList(l1, l2);
}
// 合并两个有序链表
public ListNode mergeList(ListNode l1, ListNode l2){
ListNode pre = new ListNode(0);
ListNode p = pre;
while(l1 != null && l2 != null){
if(l1.val < l2.val){
p.next = l1;
l1 = l1.next;
}else{
p.next = l2;
l2 = l2.next;
}
p = p.next;
}
p.next = l1 == null ? l2:l1;
return pre.next;
}
}
自顶向下归并排序2:
class Solution {
public ListNode sortList(ListNode head) {
return mergeSort(head);
}
// 归并排序
public ListNode mergeSort(ListNode head){
if(head==null || head.next==null){
return head;
}
ListNode slow = head; // 快慢指针
ListNode fast = head.next;
while(fast!=null && fast.next!=null){ // 查询中间节点
slow = slow.next;
fast = fast.next.next;
}
ListNode mid = slow.next; // 断链
slow.next = null;
ListNode l1 = mergeSort(head);
ListNode l2 = mergeSort(mid);
return mergeList(l1, l2);
}
// 合并两个有序链表
public ListNode mergeList(ListNode l1, ListNode l2){
ListNode pre = new ListNode(0);
ListNode p = pre;
while(l1 != null && l2 != null){
if(l1.val < l2.val){
p.next = l1;
l1 = l1.next;
}else{
p.next = l2;
l2 = l2.next;
}
p = p.next;
}
p.next = l1 == null ? l2:l1;
return pre.next;
}
}
自底向上排序: 时间复杂度 O(nlog),空间复杂度O(n)
class Solution {
public ListNode sortList(ListNode head) {
ListNode pre = new ListNode(0);
pre.next = head;
int len = getLength(head); // 获取长度
for(int step = 1; step < len; step *=2){ //依次将链表分块的长度分为:1,2,4...
ListNode curr = pre.next;
ListNode p = pre;
// p 用于链接每次分块的链表,如:第一次循环链接分块长度为1的链表,然后链接分块长度为2的链表
while(curr != null){
ListNode h1 = curr; // 第一块链表的头
ListNode h2 = spilt(h1, step); // 第二块链表的头
curr = spilt(h2, step); // 下次while循环的头,也是给到h1
// 合并第一二块链表,下次while循环合并第三四块链表....
ListNode res = mergeList(h1, h2);
// 将合并后的链表链接起来,并将指针移到链表的最后一个节点,以链接下次的链表
p.next = res;
while(p.next!=null){
p = p.next;
}
}
}
return pre.next;
}
// 分割链表,并返回后半段的链头
public ListNode spilt(ListNode head, int step){
if(head == null){
return null;
}
ListNode p = head;
for(int i = 1; i < step && p.next!=null; i ++){
p = p.next;
}
ListNode right = p.next;
p.next = null; // 切断连接
return right;
}
// 求链表长度
public int getLength(ListNode head){
int co = 0;
while(head!=null){
co++;
head = head.next;
}
return co;
}
// 合并两个升序链表
public ListNode mergeList(ListNode l1, ListNode l2){
ListNode pre = new ListNode(0);
ListNode p = pre;
while(l1 != null && l2 != null){
if(l1.val < l2.val){
p.next = l1;
l1 = l1.next;
}else{
p.next = l2;
l2 = l2.next;
}
p = p.next;
}
p.next = l1 == null ? l2:l1;
return pre.next;
}
}
160. 相交链表
实现步骤:
- 设不是公共部分的节点数分别是
a、b
,公共节点数为n
。 - 如果有公共节点,则当
p1
遍历完a+n
个节点时,再在另一个链表的头部遍历b
个节点时,必相交。原因在于此时p2
遍历了b+n+a
个结点。 - 如果没有公共节点部分,那么
p1
与p2
经历了上文的步骤后,都会为null
,null==null
为true
。
因此跳出循环,要么null == null
,要么都不为空找到了公共节点。
public class Solution {
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
ListNode p1 = headA;
ListNode p2 = headB;
while(p1 != p2){
p1 = p1 == null ? headB : p1.next;
p2 = p2 == null ? headA : p2.next;
}
return p1;
}
}
206. 反转链表
class Solution {
public ListNode reverseList(ListNode head) {
ListNode pre = new ListNode(0);
ListNode p = head;
while(p!=null){
ListNode q = p.next;
p.next = pre.next;
pre.next = p;
p = q;
}
return pre.next;
}
}
234. 回文链表
class Solution {
public boolean isPalindrome(ListNode head) {
Deque<ListNode> stack = new LinkedList<>();
ListNode p = head;
while(p!=null){
stack.push(p);
p = p.next;
}
while(head != null){
p = stack.pop();
if(p.val != head.val){
return false;
}
head = head.next;
}
return true;
}
}